Лаборатория создана на базе МФТИ в 2010 году в рамках гранта Министерства образования и науки РФ при участии сотрудников института и корпорации Intel. Руководство лабораторией осуществляет д. т. н. Владимир Пентковский, известный разработчик программно-аппаратных архитектур, заслуженный исследователь Intel.
Основным направлением деятельности лаборатории является разработка проблемно-ориентированных архитектур вычислительных систем для задач биомедицины, фармакологии и малоразмерных структур. В качестве «целевых» были выбраны несколько прикладных вычислительных задач, связанных с моделированием вирусов, клеточных мембран, а также взаимодействия белков и внешних полей с клеточными мембранами. Все они, с одной стороны, имеют большую практическую ценность, а с другой — не могут быть решены на имеющихся вычислительных ресурсах и требуют новых подходов к архитектуре кластеров.
Для проведения широкого спектра исследований в рамках деятельности лаборатории используется суперкомпьютер на базе серверных процессоров Intel Xeon E5-2690, разработанный и установенный специалистами группы компаний РСК. Использование старших моделей процессоров семейства Intel Xeon E5-2600 стало возможным благодаря применению передовой технологии жидкостного охлаждения, лежащей в основе архитектуры «РСК Торнадо».
Пиковая производительность суперкомпьютера на данный момент составляет 83,14 TFLOPS при занимаемой площади менее чем 4 кв. м. Кластер состоит из двух вычислительных стоек, содержащих в сумме 224 вычислительных узла на базе серверных плат Intel S2600JF и двух процессоров Intel Xeon® E5-2690 в каждом (всего 448 процессоров, 3584 ядра). При этом обеспечивается поддержка большого объема оперативной памяти на один узел — 64 ГБ, что суммарно составляет 14,3 ТБ ОЗУ для всей системы. Коммуникационная сеть построена на базе высокоскоростного интерфейса Infiniband QDR.
Расширение вычислительного кластера проводилось в три этапа, причем на каждом из них архитектура вычислительной системы создавалась собственной группой лаборатории, отвечающей за разработку программных и аналитических моделей будущих вычислительных комплексов с последующим изучением их производительности на приложениях, решающих задачи молекулярной динамики. На текущий момент специалисты лаборатории успешно проводят моделирование систем, в 10 раз превышающих мощность установленного кластера, т. е. имеющие производительность до 830 TFLOPS, используя инструментарий Wind River Simics, Intel VTune Amplifier, а также технологии, разработанные в лаборатории.
Тестирование эффективности и производительности будущих вычислительных комплексов проводилось на приложениях, решающих био-медико-фармацевтические задачи. Биоинформатика и моделирование лекарственных препаратов — быстрорастущие области знаний, требующие использования высокопроизводительных вычислений. Понимание того, насколько эффективно будут исполняться программы на оборудовании, подчас еще только запланированном к эксплуатации, позволяет предвидеть и заранее устранить проблемы производительности, добиться наилучшей отдачи от дорогостоящей вычислительной системы. Непрерывная адаптация архитектуры кластера к особенностям задач молекулярной динамики и биохимии, позволила российским ученым, использующим суперкомпьютер в исследовательских целях, добиться новых, уникальных результатов в данных направлениях.
Так, группа под руководством профессора Романа Ефремова из Института биоорганической химии РАН использует вычислительный кластер в МФТИ для исследований структуры и динамики белок-мембранных систем и конструирования нового класса антимикробных соединений на основе природных лантибиотиков (исполнители А. Чугунов, Д. Нольде, Д. Пыркова, А. Полянский).
Идея подпроекта по моделированию оболочки флавивирусов заключается в применении метода молекулярной динамики к системам, содержащим десятки миллионов атомов. Флавивирусы — это оболочечные вирусы, вызывающие такие заболевания, как клещевой энцефалит и лихорадки Западного Нила и Денге. Процесс проникновения флавивирусов в клетку человека сопряжен со значительной структурной перестройкой белков оболочки; одной из задач лаборатории является моделирование этого процесса в полноатомном масштабе. Моделирование систем такого размера с использованием современных вычислительных средств пока является крайне обременительным, но вычислители следующего поколения должны быть способны адекватно работать с ними. К настоящему времени на суперкомпьютере лаборатории
Моделирование молекулярной динамики рецептора NMDA является основой для компьютерного конструирования химических соединений, которые позволяют управлять его работой и могут использоваться для лечения болезней Альцгеймера, Паркинсона и других нейродегенеративных возрастных заболеваний. Вычислительная сложность этой задачи связана с необходимостью моделирования эволюции сложной надмолекулярной системы (рецептор в липидной мембране с водным окружением, всего более 360 тысяч атомов) на протяжении достаточно длительного времени. Благодаря возможностям суперкомпьютера лаборатории
Стоит отметить, что лаборатория